Lecture 01 12.1/12.2 The geometry of space and vectors

Jeremiah Southwick

January 14, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\S{12.1}$ Plane vs. Space

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - 釣A@

$\S{12.1}$ Plane vs. Space

(日)、

To represent three dimensions, we add a z-axis.

$\S12.1$ Plane vs. Space

To represent three dimensions, we add a z-axis. We always draw the coordinate axes using the right-hand rule.

・ロト ・聞ト ・ヨト ・ヨト

Since we have three variables, points are represented as triplets.

 $\frac{\text{Plane}}{(x, y)}$

$$\frac{\text{Space}}{(x, y, z)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since we have three variables, points are represented as triplets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{\text{Plane}}{(x,y)} \qquad \qquad \frac{\text{Space}}{(x,y,z)}$$

In space we usually solve for z =.

$$y = 3x - \sin(x/2) \qquad \qquad z = \sin(x+y)$$

Since we have three variables, points are represented as triplets.

$$\frac{\text{Plane}}{(x,y)} \qquad \qquad \frac{\text{Space}}{(x,y,z)}$$

In space we usually solve for z =.

$$y = 3x - \sin(x/2) \qquad \qquad z = \sin(x+y)$$

But any equation in three variables satisfies a particular set of points in space, even if it isn't a function of z.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$x^2 + y^2 = 4 \qquad \qquad x^2 + y^2 + z^2 = 9$$

Since we have three variables, points are represented as triplets.

$$\frac{\text{Plane}}{(x,y)} \qquad \qquad \frac{\text{Space}}{(x,y,z)}$$

In space we usually solve for z =.

$$y = 3x - \sin(x/2) \qquad \qquad z = \sin(x+y)$$

But any equation in three variables satisfies a particular set of points in space, even if it isn't a function of z.

$$x^2 + y^2 = 4 \qquad \qquad x^2 + y^2 + z^2 = 9$$

We can use online tools to visualize these objects. https://www.geogebra.org/3d?lang=en

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

A similar formula holds in 3D (and in higher dimensions).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

DISTANCE!

How do we find the distance between two points?

|PQ|=?

Let's try an example:

P=(2,0,2)

Q=(<mark>0,3,4</mark>)

◆□> <圖> <필> < => < =>

æ

DISTANCE!

How do we find the distance between two points?

|PQ|=?

Let's try an example:

P=(2,0,2)

Q=(<mark>0,3,4</mark>)

(=) (

How do we find the distance between two points?

|PQ|=?

Let's try an example:

P=(2,0,2)

Q=(<mark>0,3,4</mark>)

DISTANCE!

How do we find the distance between two points?

|PQ|=?

Let's try an example:

P=(2,0,2)

Q=(<mark>0,3,4</mark>)

《曰》 《聞》 《臣》 《臣》

12

DISTANCE!

How do we find the distance between two points?

|PQ|=?

In General:

P=(x,y,z)

Q=(x',y',z')

How do we find the distance between two points?

|PQ|=?

In General:

P=(x,y,z)

Q=(x',y',z')

(日) (四) (王) (王) (王)

12

DISTANCE!

How do we find the distance between two points?

|PQ|=?

In General:

P=(x,y,z)

Q=(x',y',z')

(日) (월) (분) (분)

æ

Thus we have the following distance formula.

Definition

The distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall Circles

In the plane, a circle is all the points a fixed distance away from a fixed point.

Recall Circles

In the plane, a circle is all the points a fixed distance away from a fixed point.

In space, the set of all points a fixed distance from a fixed point is a sphere.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Using the distance formula where we make (x, y, z) a point on the sphere with center (x_0, y_0, z_0) and radius r, we get the standard equation for a sphere.

If (x, y, z) has distance r from the center (x_0, y_0, z_0) , then the following equation holds:

$$\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}=r.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If (x, y, z) has distance r from the center (x_0, y_0, z_0) , then the following equation holds:

$$\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}=r.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To make it look nicer, we square both sides.

If (x, y, z) has distance r from the center (x_0, y_0, z_0) , then the following equation holds:

$$\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}=r.$$

To make it look nicer, we square both sides.

Definition

The standard equation of a sphere with center (x_0, y_0, z_0) and radius r is

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

Find the center and radius of $x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

Find the center and radius of $x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$. We complete the square in each variable, adding the same amount to both sides of the equation:

$$\left[x^{2}+3x+\left(\frac{3}{2}\right)^{2}\right]+y^{2}+\left[z^{2}-4z+\left(-\frac{4}{2}\right)^{2}\right]=-1+\left(\frac{3}{2}\right)^{2}+\left(-\frac{4}{2}\right)^{2}$$

This simplifies to

$$\left(x+\frac{3}{2}\right)^2 + y^2 + (z-2)^2 = \frac{21}{4}.$$

re has center $\left(-\frac{3}{2}, 0, 2\right)$ and radius $\sqrt{21/4}.$

Thus the sphere has center $\left(-\frac{3}{2},0,2\right)$ and radius $\sqrt{21/4}$.

$\S{12.2}$ Vectors

<ロ> <@> < E> < E> E のQの

$\S12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point.

$\S12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point. Put another way, a vector is the following information: A direction and a length/magnitude.

$\S12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point. Put another way, a vector is the following information: A direction and a length/magnitude.

The direction is where the arrow points and the length is how long the arrow is.

Vectors

The direction is where the arrow points and the length is how long the arrow is.

Vectors

The direction is where the arrow points and the length is how long the arrow is.

A vector models any application where force is involved: velocity, displacement, work, etc.

Since it doesn't matter where we draw a vector, we will usually place the initial point at the origin. This is called *standard position*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Standard Position

Definition

If a vector \vec{v} goes from (x_1, y_1, z_1) to (x_2, y_2, z_2) , then the same vector in standard position goes from (0, 0, 0) to $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$. In this case we write

$$\vec{\mathbf{v}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Standard Position

Definition

If a vector \vec{v} goes from (x_1, y_1, z_1) to (x_2, y_2, z_2) , then the same vector in standard position goes from (0, 0, 0) to $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$. In this case we write

$$\vec{\mathbf{v}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

 $\langle u_1, u_2, u_3 \rangle = \langle v_1, v_2, v_3 \rangle \iff u_1 = v_1, u_2 = v_2, \text{ and } u_3 = v_3$

Vectors

Example

How would we write down the vector starting at (-7, 5, 0) and going to (3, -1, 4)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vectors

Example

How would we write down the vector starting at (-7, 5, 0) and going to (3, -1, 4)? $\vec{v} = \langle 10, -6, 4 \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

${\sf Length}/{\sf Magnitude}$

The length of a vector is simply the distance from its initial point to its terminal point.

(ロ)、(型)、(E)、(E)、 E) の(の)

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.

$\begin{array}{l} \mbox{Definition} \\ \mbox{If } \vec{\bm{v}} = \langle v_1, v_2, v_3 \rangle, \mbox{ then the length of } \vec{\bm{v}} \mbox{ is} \end{array}$

$$\|ec{\mathbf{v}}\| = |ec{\mathbf{v}}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.

Definition If $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$, then the length of $\vec{\mathbf{v}}$ is

$$\|ec{\mathbf{v}}\| = |ec{\mathbf{v}}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

The length of $\langle 7,3,-2\rangle$

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.

Definition

If $\vec{v} = \langle v_1, v_2, v_3 \rangle$, then the length of \vec{v} is

$$\|\vec{\mathbf{v}}\| = |\vec{\mathbf{v}}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

The length of $\langle 7, 3, -2 \rangle$ is $\sqrt{49 + 9 + 4} = \sqrt{62}$.

The only vector with length 0 is the vector that starts at a point and ends at the same point. We have special notation for this vector.

Definition

The vector of all zeros is denoted $\vec{\mathbf{0}} := \langle 0, 0, 0 \rangle$. This notation can be used no matter what dimension, i.e., in 2D we have $\vec{\mathbf{0}} = \langle 0, 0 \rangle$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <