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§12.1 Plane vs. Space
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To represent three dimensions, we add a z-axis.
We always draw the coordinate axes using the right-hand rule.
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Plane vs. Space

Since we have three variables, points are represented as triplets.

Plane
(x , y)

Space
(x , y , z)

In space we usually solve for z =.

y = 3x − sin(x/2) z = sin(x + y)

But any equation in three variables satisfies a particular set of
points in space, even if it isn’t a function of z .

x2 + y2 = 4 x2 + y2 + z2 = 9

We can use online tools to visualize these objects.
https://www.geogebra.org/3d?lang=en

https://www.geogebra.org/3d?lang=en
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Distance and Spheres

In two dimensions, distance is calculated using Pythagorean’s
theorem.

x

f (x)

P

y1

x1

Q

x2

|y2 − y1|

|x2 − x1|

√
(x2 − x1)2 + (y2 − y1)2

A similar formula holds in 3D (and in higher dimensions).
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Distance!

How do we find the distance 
between two points?

     P  

     Q  

|PQ|=?

Let’s try an example:

P=(2,0,2)

Q=(0,3,4)
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Distance and Spheres

Thus we have the following distance formula.

Definition
The distance between two points (x1, y1, z1) and (x2, y2, z2) is√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.



Recall Circles

In the plane, a circle is all the points a fixed distance away from a
fixed point.
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In space, the set of all points a fixed distance from a fixed point is
a sphere.
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Spheres

x

y

z

x2 + y2 + z2 = 4

Using the distance formula where we make (x , y , z) a point on the
sphere with center (x0, y0, z0) and radius r , we get the standard
equation for a sphere.
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Spheres

If (x , y , z) has distance r from the center (x0, y0, z0), then the
following equation holds:√

(x − x0)2 + (y − y0)2 + (z − z0)2 = r .

To make it look nicer, we square both sides.

Definition
The standard equation of a sphere with center (x0, y0, z0) and
radius r is

(x − x0)2 + (y − y0)2 + (z − z0)2 = r2.
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Spheres

Example

Find the center and radius of x2 + y2 + z2 + 3x − 4z + 1 = 0.

We complete the square in each variable, adding the same amount
to both sides of the equation:

[
x2+3x+

(
3

2

)2]
+y2+

[
z2−4z+

(
−4

2

)2]
= −1+

(
3

2

)2

+

(
−4

2

)2

This simplifies to(
x +

3

2

)2

+ y2 + (z − 2)2 =
21

4
.

Thus the sphere has center

(
− 3

2 , 0, 2

)
and radius

√
21/4.
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§12.2 Vectors

A vector is a directed line segment. You can think about a vector
as an arrow pointing from one point to another point.
Put another way, a vector is the following information: A direction
and a length/magnitude.

x

y

~u

The direction is where the arrow points and the length is how long
the arrow is.
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Vectors

The direction is where the arrow points and the length is how long
the arrow is.

A vector models any application where force is involved: velocity,
displacement, work, etc.

x

y

~u

(x1, y1)
(x2, y2)

~u
(x2 − x1, y2 − y1)

Since it doesn’t matter where we draw a vector, we will usually
place the initial point at the origin. This is called standard position.
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Standard Position

Definition
If a vector ~v goes from (x1, y1, z1) to (x2, y2, z2), then the same
vector in standard position goes from (0, 0, 0) to
(x2 − x1, y2 − y1, z2 − z1). In this case we write

~v = 〈x2 − x1, y2 − y1, z2 − z1〉.

〈u1, u2, u3〉 = 〈v1, v2, v3〉 ⇔ u1 = v1, u2 = v2, and u3 = v3
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Vectors

Example

How would we write down the vector starting at (−7, 5, 0) and
going to (3,−1, 4)?

~v = 〈10,−6, 4〉.
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Length/Magnitude

The length of a vector is simply the distance from its initial point
to its terminal point.

Definition
If ~v = 〈v1, v2, v3〉, then the length of ~v is

‖~v‖ = |~v| =
√
v21 + v22 + v23 .

Example

The length of 〈7, 3,−2〉 is
√

49 + 9 + 4 =
√

62.
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Zero Vector

The only vector with length 0 is the vector that starts at a point
and ends at the same point. We have special notation for this
vector.

Definition
The vector of all zeros is denoted ~0 := 〈0, 0, 0〉. This notation can
be used no matter what dimension, i.e., in 2D we have ~0 = 〈0, 0〉.


