Lecture 01
 $12.1 / 12.2$ The geometry of space and vectors

Jeremiah Southwick

January 14, 2019

§12.1 Plane vs. Space

§12.1 Plane vs. Space

To represent three dimensions, we add a z-axis.

§12.1 Plane vs. Space

To represent three dimensions, we add a z-axis.
We always draw the coordinate axes using the right-hand rule.

Plane vs. Space

Since we have three variables, points are represented as triplets.
$\frac{\text { Plane }}{(x, y)}$

$$
\frac{\text { Space }}{(x, y, z)}
$$

Plane vs. Space

Since we have three variables, points are represented as triplets.
$\frac{\text { Plane }}{(x, y)} \quad \frac{\text { Space }}{(x, y, z)}$

In space we usually solve for $z=$.

$$
y=3 x-\sin (x / 2) \quad z=\sin (x+y)
$$

Plane vs. Space

Since we have three variables, points are represented as triplets.
$\frac{\text { Plane }}{(x, y)}$

$$
\frac{\text { Space }}{(x, y, z)}
$$

In space we usually solve for $z=$.
$y=3 x-\sin (x / 2)$

$$
z=\sin (x+y)
$$

But any equation in three variables satisfies a particular set of points in space, even if it isn't a function of z.
$x^{2}+y^{2}=4$

$$
x^{2}+y^{2}+z^{2}=9
$$

Plane vs. Space

Since we have three variables, points are represented as triplets.
$\frac{\text { Plane }}{(x, y)}$

$$
\frac{\text { Space }}{(x, y, z)}
$$

In space we usually solve for $z=$.
$y=3 x-\sin (x / 2)$

$$
z=\sin (x+y)
$$

But any equation in three variables satisfies a particular set of points in space, even if it isn't a function of z.
$x^{2}+y^{2}=4$

$$
x^{2}+y^{2}+z^{2}=9
$$

We can use online tools to visualize these objects. https://www.geogebra.org/3d?lang=en

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

Distance and Spheres

In two dimensions, distance is calculated using Pythagorean's theorem.

A similar formula holds in 3D (and in higher dimensions).

DISTANCE!

How do we find the distance
between two points?
|PQ|=?

Let's try an example:

$$
\begin{aligned}
& \mathrm{P}=(2,0,2) \\
& \mathrm{Q}=(0,3,4)
\end{aligned}
$$

DIStance!

How do we find the distance
between two points?

$$
|\mathrm{PQ}|=?
$$

Let's try an example:

$$
\begin{aligned}
& \mathrm{P}=(2,0,2) \\
& \mathrm{Q}=(0,3,4)
\end{aligned}
$$

3

DIStance!

How do we find the distance
between two points?

$$
|\mathrm{PQ}|=?
$$

Let's try an example:

$$
\begin{aligned}
& \mathrm{P}=(2,0,2) \\
& \mathrm{Q}=(0,3,4)
\end{aligned}
$$

3

DIStance!

How do we find the distance between two points?
|PQ|=?

Let's try an example:

$$
\begin{aligned}
& \mathrm{P}=(2,0,2) \\
& \mathrm{Q}=(0,3,4)
\end{aligned}
$$

DISTANEE!

How do we find the distance
between two points?
|PQ|=?

In General:
$P=(x, y, z)$
$Q=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

DIStance!

How do we find the distance
between two points?

$$
|\mathrm{PQ}|=?
$$

In General:

$$
\mathrm{P}=(x, y, z)
$$

$$
\mathrm{Q}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

DISTANEE!

How do we find the distance
between two points?
|PQ|=?

In General:
$P=(x, y, z)$
$\mathrm{Q}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, z^{\prime}\right)$

Distance and Spheres

Thus we have the following distance formula.
Definition
The distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
$$

Recall Circles

In the plane, a circle is all the points a fixed distance away from a fixed point.

Recall Circles

In the plane, a circle is all the points a fixed distance away from a fixed point.

In space, the set of all points a fixed distance from a fixed point is a sphere.

Spheres

Spheres

Using the distance formula where we make (x, y, z) a point on the sphere with center $\left(x_{0}, y_{0}, z_{0}\right)$ and radius r, we get the standard equation for a sphere.

Spheres

If (x, y, z) has distance r from the center $\left(x_{0}, y_{0}, z_{0}\right)$, then the following equation holds:

$$
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r
$$

Spheres

If (x, y, z) has distance r from the center $\left(x_{0}, y_{0}, z_{0}\right)$, then the following equation holds:

$$
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r
$$

To make it look nicer, we square both sides.

Spheres

If (x, y, z) has distance r from the center $\left(x_{0}, y_{0}, z_{0}\right)$, then the following equation holds:

$$
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r .
$$

To make it look nicer, we square both sides.
Definition
The standard equation of a sphere with center $\left(x_{0}, y_{0}, z_{0}\right)$ and radius r is

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

Spheres

Example
Find the center and radius of $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$.

Spheres

Example

Find the center and radius of $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$.
We complete the square in each variable, adding the same amount to both sides of the equation:

$$
\left[x^{2}+3 x+\left(\frac{3}{2}\right)^{2}\right]+y^{2}+\left[z^{2}-4 z+\left(-\frac{4}{2}\right)^{2}\right]=-1+\left(\frac{3}{2}\right)^{2}+\left(-\frac{4}{2}\right)^{2}
$$

This simplifies to

$$
\left(x+\frac{3}{2}\right)^{2}+y^{2}+(z-2)^{2}=\frac{21}{4}
$$

Thus the sphere has center $\left(-\frac{3}{2}, 0,2\right)$ and radius $\sqrt{21 / 4}$.
$\S 12.2$ Vectors

$\S 12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point.

$\S 12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point. Put another way, a vector is the following information: A direction and a length/magnitude.

$\S 12.2$ Vectors

A vector is a directed line segment. You can think about a vector as an arrow pointing from one point to another point. Put another way, a vector is the following information: A direction and a length/magnitude.

The direction is where the arrow points and the length is how long the arrow is.

Vectors

The direction is where the arrow points and the length is how long the arrow is.

Vectors

The direction is where the arrow points and the length is how long the arrow is.

A vector models any application where force is involved: velocity, displacement, work, etc.

Since it doesn't matter where we draw a vector, we will usually place the initial point at the origin. This is called standard position.

Standard Position

Definition

If a vector $\overrightarrow{\mathbf{v}}$ goes from $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$, then the same vector in standard position goes from $(0,0,0)$ to $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. In this case we write

$$
\overrightarrow{\mathbf{v}}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle .
$$

Standard Position

Definition

If a vector $\overrightarrow{\boldsymbol{v}}$ goes from $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$, then the same vector in standard position goes from $(0,0,0)$ to $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. In this case we write

$$
\overrightarrow{\mathbf{v}}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle .
$$

$$
\left\langle u_{1}, u_{2}, u_{3}\right\rangle=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \Leftrightarrow u_{1}=v_{1}, u_{2}=v_{2}, \text { and } u_{3}=v_{3}
$$

Vectors

Example

How would we write down the vector starting at $(-7,5,0)$ and going to $(3,-1,4)$?

Vectors

Example

How would we write down the vector starting at $(-7,5,0)$ and going to $(3,-1,4)$?
$\overrightarrow{\mathbf{v}}=\langle 10,-6,4\rangle$.

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.
Definition
If $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then the length of $\overrightarrow{\mathbf{v}}$ is

$$
\|\overrightarrow{\mathbf{v}}\|=|\overrightarrow{\mathbf{v}}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.
Definition
If $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then the length of $\overrightarrow{\mathbf{v}}$ is

$$
\|\overrightarrow{\mathbf{v}}\|=|\overrightarrow{\mathbf{v}}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Example
The length of $\langle 7,3,-2\rangle$

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.
Definition
If $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then the length of $\overrightarrow{\mathbf{v}}$ is

$$
\|\overrightarrow{\mathbf{v}}\|=|\overrightarrow{\mathbf{v}}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Example
The length of $\langle 7,3,-2\rangle$ is $\sqrt{49+9+4}=\sqrt{62}$.

Zero Vector

The only vector with length 0 is the vector that starts at a point and ends at the same point. We have special notation for this vector.

Definition
The vector of all zeros is denoted $\overrightarrow{\mathbf{0}}:=\langle 0,0,0\rangle$. This notation can be used no matter what dimension, i.e., in $2 D$ we have $\overrightarrow{\mathbf{0}}=\langle 0,0\rangle$.

